"""TaylorNonLinearDiffuser Component.
@author: R Glade
@author: K Barnhart
@author: G Tucker
"""
# Cubic hillslope flux component
import numpy as np
from landlab import Component
from landlab import LinkStatus
[docs]
class TaylorNonLinearDiffuser(Component):
"""Hillslope evolution using a Taylor Series expansion of the Andrews-
Bucknam formulation of nonlinear hillslope flux derived following following
Ganti et al., 2012. The flux is given as::
qs = KS * (1 + (S / Sc)**2 + (S / Sc)**4 + ... + (S / Sc)**2(n - 1))
where *K* is is the diffusivity, *S* is the slope, *Sc* is the critical slope, and
*n* is the number of terms.
The default behavior uses two terms to produce a flux law as described by
Equation 6 of Ganti et al., (2012).
Examples
--------
>>> import numpy as np
>>> import decimal
>>> from landlab import RasterModelGrid
>>> from landlab.plot.imshow import imshow_grid
>>> mg = RasterModelGrid((3, 3))
>>> z = mg.add_zeros("topographic__elevation", at="node")
>>> initial_slope = 1.0
>>> leftmost_elev = 1000.0
>>> z[:] = leftmost_elev
>>> z[:] += (initial_slope * np.amax(mg.x_of_node)) - (initial_slope * mg.x_of_node)
>>> mg.set_closed_boundaries_at_grid_edges(False, True, False, True)
>>> cubicflux = TaylorNonLinearDiffuser(mg, slope_crit=0.1)
>>> cubicflux.run_one_step(1.0)
>>> np.allclose(
... mg.at_node["topographic__elevation"],
... np.array(
... [1002.0, 1001.0, 1000.0, 1002.0, 1001.0, 1000.0, 1002.0, 1001.0, 1000.0]
... ),
... )
True
The :class:`~.TaylorNonLinearDiffuser` makes and moves
soil at a rate proportional
to slope, this means that there is a characteristic time scale for soil
transport and an associated stability criteria for the timestep. The
maximum characteristic time scale, *Demax*, is given as a function of the
hillslope diffustivity, *D*, the maximum slope, *Smax*, and the critical slope
*Sc*::
Demax = D * (
1 + (Smax / Sc) ** 2 + (Smax / Sc) ** 4 + ... + (Smax / Sc) ** (2 * (n - 1))
)
The maximum stable time step is given by::
dtmax = courant_factor * dx * dx / Demax
Where the courant factor is a user defined scale (default is 0.2), and
dx is the length of the shortest link in the grid.
The :class:`~.TaylorNonLinearDiffuser` has a boolean
flag that permits a user to be
warned if timesteps are too large for the slopes in the model grid
(``if_unstable="warn"``) and a boolean flag that turns on dynamic
timesteppping (``dynamic_dt=False``).
>>> cubicflux = TaylorNonLinearDiffuser(mg, slope_crit=0.1, if_unstable="warn")
>>> cubicflux.run_one_step(2.0)
Topographic slopes are high enough such that the Courant condition is
exceeded AND you have not selected dynamic timestepping with
dynamic_dt=True. This may lead to infinite and/or nan values for slope,
elevation, and soil depth. Consider using a smaller time step or dynamic
timestepping. The Courant condition recommends a timestep of 0.2 or
smaller.
Alternatively you can specify ``if_unstable="raise"``, and a `RuntimeError` will
be raised if this condition is not met.
Next, lets do an example with dynamic timestepping.
>>> mg = RasterModelGrid((5, 5))
>>> z = mg.add_zeros("topographic__elevation", at="node")
We'll use a steep slope.
>>> z += mg.node_x.copy() ** 2
>>> cubicflux = TaylorNonLinearDiffuser(mg, if_unstable="warn", dynamic_dt=False)
Lets try to move the soil with a large timestep. Without dynamic time
steps, this gives a warning that we've exceeded the dynamic timestep size
and should use a smaller timestep. We could either use the smaller timestep,
or specify that we want to use a dynamic timestep.
>>> cubicflux.run_one_step(10.0)
Topographic slopes are high enough such that the Courant condition is
exceeded AND you have not selected dynamic timestepping with
dynamic_dt=True. This may lead to infinite and/or nan values for slope,
elevation, and soil depth. Consider using a smaller time step or dynamic
timestepping. The Courant condition recommends a timestep of
0.004 or smaller.
Now, we'll re-build the grid and do the same example with dynamic
timesteps.
>>> mg = RasterModelGrid((5, 5))
>>> z = mg.add_zeros("topographic__elevation", at="node")
>>> z += mg.node_x.copy() ** 2
>>> cubicflux = TaylorNonLinearDiffuser(mg, if_unstable="warn", dynamic_dt=True)
>>> cubicflux.run_one_step(10.0)
>>> np.any(np.isnan(z))
False
References
----------
**Required Software Citation(s) Specific to this Component**
Barnhart, K., Glade, R., Shobe, C., Tucker, G. (2019). Terrainbento 1.0: a
Python package for multi-model analysis in long-term drainage basin
evolution. Geoscientific Model Development 12(4), 1267--1297.
https://dx.doi.org/10.5194/gmd-12-1267-2019
**Additional References**
Ganti, V., Passalacqua, P., Foufoula-Georgiou, E. (2012). A sub-grid scale
closure for nonlinear hillslope sediment transport models Journal of
Geophysical Research: Earth Surface 117(F2).
https://dx.doi.org/10.1029/2011jf002181
"""
_name = "TaylorNonLinearDiffuser"
_unit_agnostic = True
_cite_as = """
@article{barnhart2019terrain,
author = {Barnhart, Katherine R and Glade, Rachel C and Shobe, Charles M
and Tucker, Gregory E},
title = {{Terrainbento 1.0: a Python package for multi-model analysis in
long-term drainage basin evolution}},
doi = {10.5194/gmd-12-1267-2019},
pages = {1267---1297},
number = {4},
volume = {12},
journal = {Geoscientific Model Development},
year = {2019},
}
"""
_info = {
"soil__flux": {
"dtype": float,
"intent": "out",
"optional": False,
"units": "m^2/yr",
"mapping": "link",
"doc": "flux of soil in direction of link",
},
"topographic__elevation": {
"dtype": float,
"intent": "inout",
"optional": False,
"units": "m",
"mapping": "node",
"doc": "Land surface topographic elevation",
},
"topographic__slope": {
"dtype": float,
"intent": "out",
"optional": False,
"units": "m/m",
"mapping": "link",
"doc": "gradient of the ground surface",
},
}
[docs]
def __init__(
self,
grid,
linear_diffusivity=1.0,
slope_crit=1.0,
nterms=2,
dynamic_dt=False,
if_unstable="pass",
courant_factor=0.2,
):
"""Initialize the TaylorNonLinearDiffuser.
Parameters
----------
grid: ModelGrid
Landlab ModelGrid object
linear_diffusivity: float, optional
Hillslope diffusivity (m**2 / yr).
slope_crit: float, optional
Critical slope.
nterms: int, optional
Number of terms in the Taylor expansion.
Two terms (the default) gives the behavior
described in Ganti et al. (2012).
dynamic_dt : bool, optional
Turn dynamic time-stepping on or off.
if_unstable : {'pass', 'warn', 'raise'}, optional
Specify how potential instability due to slopes that are too high
is handled.
courant_factor : float, optional
Factor to identify stable time-step duration when using dynamic
timestepping.
"""
super().__init__(grid)
# Store grid and parameters
self._K = linear_diffusivity
self._slope_crit = slope_crit
self._nterms = nterms
self._dynamic_dt = dynamic_dt
self._courant_factor = courant_factor
self._if_unstable = if_unstable
self._shortest_link = np.amin(grid.length_of_link) # for Courant
# Create fields:
# elevation
self._elev = self._grid.at_node["topographic__elevation"]
# slope gradient
if "topographic__slope" not in self._grid.at_link:
self._grid.add_zeros("topographic__slope", at="link")
self._slope = self._grid.at_link["topographic__slope"]
# soil flux
if "soil__flux" not in self._grid.at_link:
self._grid.add_zeros("soil__flux", at="link")
self._flux = self._grid.at_link["soil__flux"]
[docs]
def soilflux(self, dt):
"""Calculate soil flux for a time period, dt.
Parameters
----------
dt: float
The imposed timestep.
"""
# establish time left as all of dt
time_left = dt
# begin while loop for time left
while time_left > 0.0:
# Calculate gradients
self._slope[:] = self._grid.calc_grad_at_link(self._elev)
self._slope[self._grid.status_at_link == LinkStatus.INACTIVE] = 0.0
# Test for time stepping courant condition
courant_slope_term = 0.0
courant_s_over_scrit = self._slope.max() / self._slope_crit
for i in range(0, 2 * self._nterms, 2):
courant_slope_term += courant_s_over_scrit**i
if np.any(np.isinf(courant_slope_term)):
message = (
"Soil flux term is infinite in Courant condition "
"calculation. This is likely due to "
"using too many terms in the Taylor expansion."
)
raise RuntimeError(message)
# Calculate De Max
De_max = self._K * (courant_slope_term)
# Calculate longest stable timestep
self._dt_max = self._courant_factor * (self._shortest_link**2) / De_max
# Test for the Courant condition and print warning if user intended
# for it to be printed.
if (
(self._dt_max < dt)
and (not self._dynamic_dt)
and (self._if_unstable != "pass")
):
message = (
"Topographic slopes are high enough such that the "
"Courant condition is exceeded AND you have not "
"selected dynamic timestepping with dynamic_dt=True. "
"This may lead to infinite and/or nan values for "
"slope, elevation, and soil depth. Consider using a "
"smaller time step or dynamic timestepping. The "
"Courant condition recommends a timestep of "
"" + str(self._dt_max) + " or smaller."
)
if self._if_unstable == "raise":
raise RuntimeError(message)
if self._if_unstable == "warn":
print(message)
# if dynamic dt is selected, use it, otherwise, use the entire time
if self._dynamic_dt:
self._sub_dt = np.min([dt, self._dt_max])
time_left -= self._sub_dt
else:
self._sub_dt = dt
time_left = 0
# Calculate flux
slope_term = 0.0
s_over_scrit = self._slope / self._slope_crit
for i in range(0, 2 * self._nterms, 2):
slope_term += s_over_scrit**i
if np.any(np.isinf(slope_term)):
message = (
"Soil flux term is infinite. This is likely due to "
"using too many terms in the Taylor expansion."
)
raise RuntimeError(message)
self._flux[:] = -((self._K * self._slope) * (slope_term))
# Calculate flux divergence
dqdx = self._grid.calc_flux_div_at_node(self._flux)
# Update topography
self._elev[self._grid.core_nodes] -= (
dqdx[self._grid.core_nodes] * self._sub_dt
)
[docs]
def run_one_step(self, dt):
"""Advance cubic soil flux component by one time step of size dt.
Parameters
----------
dt: float
The imposed timestep.
"""
self.soilflux(dt)